Flow extensions and group connectivity with applications

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Aspects of Group Extensions and Their Applications in Topology

cyclic groups, torsion-free extensions, Betti numbers We describe algorithms to determine extensions of infinite polycyclic groups having certain properties. In particular, we are interested in torsion-free extensions and extensions whose Fitting subgroup has a minimal centre. Then we apply these methods in topological applications. We discuss the calculation of Betti numbers for compact manifo...

متن کامل

Group Actions and Group Extensions

In this paper we study finite group extensions represented by special cohomology classes. As an application, we obtain some restrictions on finite groups which can act freely on a product of spheres or on a product of real projective spaces. In particular, we prove that if (Z/p)r acts freely on (S1)k , then r ≤ k.

متن کامل

pg-EXTENSIONS AND p-EXTENSIONS WITH APPLICATIONS TO C(X)

Essential extensions and p-extensions have been studied for commutative rings with identity in various articles, such as [2], [3], and [13]. The present article applies these concepts to certain subrings of C(X). Moreover, the article introduces a new ring extension, called a pg-extension, and determines its relation to both essential extension and p-extension. It turns out that the pg-extensio...

متن کامل

Group Extensions and Automorphism Group Rings

We use extensions to study the semi-simple quotient of the group ring FpAut(P ) of a finite p-group P . For an extension E : N → P → Q, our results involve relations between Aut(N), Aut(P ), Aut(Q) and the extension class [E] ∈ H(Q,ZN). One novel feature is the use of the intersection orbit group Ω([E]), defined as the intersection of the orbits Aut(N) · [E] and Aut(Q) · [E] in H(Q,ZN). This gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2020

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2020.103164